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Knowledge distillation (KD) attempts to compress a deep teacher model into a shallow student model by
letting the student mimic the teacher’s outputs. However, conventional KD approaches can have the fol-
lowing shortcomings. First, existing KD approaches align the global distribution between teacher and stu-
dent models and overlook the fine-grained features. Second, most of existing approaches focus on
classification tasks and require the architecture of teacher and student models to be similar. To address
these limitations, we propose a contrastive adversarial knowledge distillation called CAKD for time series
regression tasks where the student and teacher are using different architectures. Specifically, we first pro-
pose adversarial adaptation to automatically align the feature distribution between student and teacher
networks respectively. Yet, adversarial adaptation can only align the global feature distribution without
considering the fine-grained features. To mitigate this issue, we employ a novel contrastive loss for
instance-wise alignment between the student and teacher. Particularly, we maximize similarity between
teacher and student features that originate from the same sample. Lastly, a KD loss is used to for the
knowledge distillation where the teacher and student have two different architectures. We used a turbo-
fan engine dataset that consists of four sub-datasets to evaluate the model performance. The results show
that the proposed CAKD method consistently outperforms state-of-the-art methods in terms of two dif-
ferent metrics.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Recent years have witnessed a significant achievement of deep
neural networks (DNNs) in various real-life applications, such as
face recognition, machine translation, autonomous vehicles, etc.
With the increasing concerns on data privacy, energy efficiency
and communication latency, lots of these DNNs are required to
be deployable on edge devices, e.g., mobiles and Internet of Things
(IoT) devices. However, a deep learning model with better perfor-
mance often comes with more complex architecture, resulting mil-
lions of model weights and tons of floating-point operations [1]. It
hinders the deployment of complex deep models on resource-
limited environments like edge devices.A real industry case is
prognostic and health management (PHM) for intelligent industrial
manufacturing. As an essential part of PHM, machine remaining
useful life (RUL) prediction is crucial for reducing maintenance cost
and improving system reliability [2,3]. The RUL prediction algo-
rithms are often required to run on edge devices for real-time pro-
cessing and fast decision-making in smart factories [4]. However,
most of previous works pay much more attention on prediction
accuracy than model complexity. Long short-terms memory
(LSTM) and convolutional neural network (CNN) are two
commonly-used deep learning networks for RUL prediction. More-
over, LSTM has exhibited outstanding capability on extracting
informative features and outperformed CNN based models [5–7].
However, the LSTM generally has much higher computational
complexity than CNN due to its unique structure of cascade con-
nections. Hence, a question comes up: is there a deep learning
algorithm that can achieve similar performance as LSTM but also
as compact as CNN?

To address the conflict between model performance and model
efficiency, many advanced techniques have been proposed to com-
press deep learning models, such as parameter pruning [8], param-
eter quantization [9,10], low-rank factorization [11], and
knowledge distillation (KD) [12,13]. Among them, KD is particu-
regres-
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larly effective due to the paradigm of transferring knowledge (soft
logits) [13] and/or intermediate representations [14] from a large
network (termed Teacher) to a small network (termed Student).
Previous works have shown that the compact student trained with
KD can converge faster and achieve a better performance than an
independent network trained without a teacher’s supervision
[15]. However, there are still some challenges by using KD for
model compression. Firstly, previous KD research mainly focuses
on classification tasks and few of them focus on regression tasks
like object localization [16] and camera pose regression[17]. There
is lack of research on KD methods for time-series regression tasks.
Secondly, as aforementioned, for time-series regression tasks, it is
more practical to transfer knowledge between disparate network
architecture (e.g., from a LSTM based network to a CNN based net-
work). But students in previous works usually share a similar net-
work architecture as teachers, either shallower [18,19] or thinner
but deeper [14]. Thirdly, most existing methods either only align
the global feature distributions between teacher and student mod-
els [20,21], or only consider the sample-wise feature alignment
[22,23]. We show that the integration of distribution-wise and
sample-wise feature alignment outperforms other state-of-the-
art KD methods in cross-architecture knowledge distilling
scenario.

To address the above issues, in this paper, we propose a novel
contrastive adversarial knowledge distillation (CAKD) approach
for model compression in the regression task of machine RUL pre-
diction. In particular, the proposed approach aims to distill knowl-
edge from a complex LSTM-based teacher to a simple CNN-based
student for RUL prediction. The adversarial loss is used for the
automatic alignment of global features, while the contrastive loss
is used to align fine-grained features by instance-wise
discrimination.

The main contributions of the proposed method are summa-
rized as follows.

� We propose an adversarial learning based approach to automat-
ically minimize the discrepancy of feature distributions
between different network architectures for time-series regres-
sion tasks (i.e., between a complex LSTM-based teacher and a
simple CNN-based student). Meanwhile, we propose a fine-
grained sample-wise feature adaptation between the student
and teacher models by using contrastive learning.

� The integration of distribution-wise and sample-wise feature
alignment can effectively transfer the knowledge between dis-
parate network architectures, which is more practical in time
series regression tasks.

� Extensive experiments demonstrate that the propose CAKD
method achieves better performance than state-of-the-art KD
methods.

The rest of the paper is organized as follows. Section 2 reviews some
related works on knowledge distillation and RUL prediction. Sec-
tion 3 presents the details of our proposed CAKD method. Section 4
introduces our experimental setup, followed by experimental
results, ablation study and sensitivity analysis. Finally, Section 5
concludes this work.

2. Related works

2.1. Knowledge distillation

The authors in [12] first introduced the idea of using a compact
model to approximate the function learned by a larger and better-
performing model. The authors in [13] further extended this idea
by making the student mimic teacher’s soften logits and termed
it as knowledge distillation. In addition to just mimicking the log-
2

its, Romero et al. proposed to adopt hint-based training scheme for
aligning the feature maps [14] (i.e., feature distillation), where the
L2 distance was chosen as the metric for measuring the distance
between two feature maps.

Recently, feature distillation has attained more attention.
Zagoruyko and Komodakis proposed to transfer the spatial atten-
tion maps from a powerful teacher network to a smaller student
network [21]. A novel pairwise similarity matrix was proposed in
[20] to preserve interrelationships of similar samples in student’s
representation space as those in teacher’s. Yim et al. defined the
inner product between features from two layers as flow and trans-
ferred the flow to student instead of knowledge [24]. Nikolaos et al.
directly matched the probability distribution of the data between
teacher’s and student’s feature spaces [25]. Instead of handcrafting
the knowledge, adversarial methods are introduced in [26–29] for
feature alignment between teacher and student networks. Another
work closely related to our research is the contrastive distillation
approach introduced in [22]. It aims to maximize similarity
between teacher and student’s representations that are originated
from the same instance while minimizing similarity between tea-
cher and student’s representation that come from different sam-
ples. Above adversarial methods and contrastive learning method
work with the configuration that teacher and student share a sim-
ilar network architecture for classification tasks. In our work, we
extend the adversarial learning to cross-architecture scenario for
feature alignment in time-series regression tasks. Besides, the suc-
cess of KD methods is due to the informative knowledge lying in
the logits from teacher. Hence, most of previous works focus on
classification task. Meanwhile, KD methods have also been demon-
strated to be suitable for regression tasks like object localization
[16] and camera pose regression [17]. We empirically show that
for time-series regression problems, the ‘Soft Labels’ from teacher
can also provide an approximate solution space to effectively train
a compact student.

2.2. RUL prediction

In the regression task of machine RUL prediction, deep learning
methods have been attracting remarkable attentions due to their
superior capability of automatically mapping the input sensory
data to the corresponding RUL values. [30] was the first attempt
to employ a CNN for RUL prediction. The convolution operations
were applied along the temporal dimension over all the input sen-
sor data to learn high-level abstract features. Thereafter, different
CNN variants were proposed for RUL prediction, such as NB-CNN
[31], Deep-CNN [32], Double-CNN [33], etc. Another popular deep
learning architecture of LSTM has also been widely explored for
RUL prediction as LSTM can capture the temporal dependency
among sequential sensory data. Many works have shown that
LSTM-based models can outperform CNN-based models in the task
of RUL prediction [5–7]. However, LSTM-based models often have
higher computational complexity and require much more memory
compared with CNN-based models. In this paper, we aim to pro-
pose a method to bridge the gap between model performance
and model complexity.
3. Methodology

In this section, we first give an overview of our proposed CAKD
method and then present the details of each component in CAKD.

3.1. Overview of CAKD

The overall structure is illustrated in Fig. 1. Specifically, our
method transfers the feature representations and the final knowl-



Fig. 1. The proposed CAKD method with a two-stage training scheme: (a) feature distillation by adversarial and contrastive learning, and (b) knowledge distillation learning.
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edge from a cumbersome teacher to a compact student with dis-
parate network architectures. It consists of two main steps,
namely, 1) feature distillation through adversarial and contrastive
learning, and 2) knowledge distillation learning. Both the Teacher
(T) and Student (S) models include two modules, i.e., feature
extractor and regressor. The feature extractor is to learn a valuable
feature map for the final regression task. Let x 2 Rk�l represent the
input sample with k input sensors and l time steps, wTðxÞ and wSðxÞ
represent the feature maps from the feature extractors wT and wS,
respectively. As shown in Fig. 1(a), both adversarial learning and
contrastive learning are designed to learn the student’s feature
extractor. The extracted feature maps are then fed into the regres-
sors of T and S, and generate the outputs ŷT ; ŷS respectively. Here,
we consider the teacher output ŷT as ‘Soft Label’, while the actual
label (i.e., ground truth) is denoted as ytrue. Given the soft labels
and actual labels, the KD learning part in Fig. 1(b) can thus mini-
mize both the soft loss LSoft and the hard loss LHard to update the
student’s feature extractor and regressor.

Note that the architectures of teacher and student could be sim-
ilar or dissimilar. For example, a similar CNN-based structure could
be employed for both teacher and student models in an image clas-
sification task, except that model depth or weights in the student
network are less than those in the teacher network. However,
transferring knowledge between dissimilar network architectures
are generally considered more challenging than similar network
architectures as the latent feature spaces learnt by teacher and stu-
dent with dissimilar architectures could be totally different. In this
work, we employ dissimilar structures for teacher’s and student’s
feature extractors, i.e., a complex LSTM-based structure for teacher
and a CNN-based structure for student. For the regressors, we use
stacked fully-connected layers for both teacher and student, except
that student’s regressor has less hidden units.
3.2. Feature distillation

Intuitively, distilling features between dissimilar network
architectures is more challenging since the feature spaces could
be totally disparate. As aforementioned, most of previous works
focus on pre-defining a decent metric to measure the disparity
between teacher’s and student’s feature spaces [14,20]. Those met-
rics have been shown to be effective in related areas, such as image
classification and natural language processing. However, it is not
clearly stated whether these pre-defined metrics are also feasible
for other tasks. Therefore, we are motivated to design an automatic
process that can learn such a metric to align the feature maps from
the teacher and student.
3

3.2.1. Adversarial learning
Inspired by [34], the adversarial learning scheme is exploited in

this paper to automatically learn this metric for feature distillation.
As depicted in Fig. 1(a), a binary classification network Discrimina-
tor, denoted as Fd, is employed to discriminate whether the input
feature map is from the teacher or student network. Considering
the fact that the feature maps dimensions of teacher and student
generally are different, we add a single-layer linear network
(named Adaptor) to match them. The adversarial learning can be
formulated as follows:

min
Fd

LD ¼ �Ex½logðFdðwTðxÞÞÞ þ logð1� Fdðf ðwSðxÞÞÞÞ�; ð1Þ
min
wS ;f

LG ¼ Ex½logð1� Fdðf ðwSðxÞÞÞÞ�: ð2Þ

Here, wS and wT represent the feature extractors of the student and
teacher networks, respectively. wSðxÞ and wTðxÞ represent the fea-
ture maps from student’s and teacher’s feature extractors, respec-
tively. f represents the adaptor and is trained together with wS.
Note that the parameters of wT are always fixed during the training
stage.

We train wS and Fd in an adversarial manner. First, we fix the
parameters of wS and f, and train the discriminator Fd. The goal of
training discriminator Fd is to maximize the probability of correctly
classifying an input feature maps as ‘real’ (from teacher) or ‘fake’
(from student). It consists of two calculation steps for training
the discriminator as follows. First, a batch of ‘real’ samples are con-
structed from teacher’s feature extractor and forwarded pass
through Fd. After the loss logðFdðwTðxÞÞÞ is calculated, the gradients
are then calculated with a backward pass. Secondly, a batch of
‘fake’ samples are constructed from the student’s feature extractor,
which are also forwarded pass through Fd. Then we calculate the
loss logð1� Fdðf ðwSðxÞÞÞ and accumulate the gradients with a back-
ward pass. By minimizing loss Eq. (1) with the gradients accumu-
lated from both ‘real’ and ‘fake’ batches, we can maximize the
probability that Fd correctly classifies wSðxÞ from student and
wTðxÞ from teacher. Second, we fix the parameters of Fd and then
train the wS by minimizing logð1� Fdðf ðwSðxÞÞÞ in order to generate
better ‘fake’ feature maps as shown in Eq. (2). It allows the student
to generate feature maps more like the teacher’s such that Fd can-
not tell whether they are from wS or wT . By alternately applying
above two steps, the discriminator Fd eventually cannot distin-
guish whether the feature maps are from the teacher or student
network. In other words, the student’s feature extractor wS can
generate features pretty close to the teacher’s.
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3.2.2. Contrastive learning
Although the adversarial learning is capable of learning a

promising latent metric for feature distillation, there are still some
challenges. First, according to Eq. (2), the optimization of wS totally
depends on the accuracy of the discriminator Fd. The training loss
of wS is sometimes difficult to converge, especially in the early
training stage. Second, adversarial alignment can only align the
overall distribution and overlook the fine-grained features. To mit-
igate these issues, we employ contrasting learning [22,35,36] for
instance-wise feature alignment between the teacher and student.
Particularly, the contrastive loss aims to maximize the mutual
information between teacher and student features which originate
from same sample.

As aforementioned, the dimension of feature maps from tea-
cher’s and student’s feature extractors may be different. Given a
sample xi, we employ a linear Embedded network E to transform
wSðxiÞ and wTðxiÞ as follows so that v i and vþ

i have the same
dimension.

v i ¼ ESðwSðxiÞÞ; ð3Þ

vþ
i ¼ ETðwTðxiÞÞ: ð4Þ

As shown in Eqs. (3) and (4), the feature vectors v i and vþ
i are from

the student and teacher, respectively. ES and ET are trainable. For v i,
we consider vþ

i as its positive vector, while we also derive K nega-
tive vectors fv�

1 ; v�
2 ; ::; v�

K g as shown in Fig. 1(a). v i and vþ
i should

have a similar probability distribution if the student can perfectly
mimic the teacher, and v i and v�

j should have different distributions
since they are from different samples. The objective of contrastive
learning is to push the vector v i close to its positive sample vþ

i

and pull it away from those K negative samples.
Following prior work [22], we formulate the posterior probabil-

ity of two vectors u and v from same data distribution in Eq. (5).

Hðu; vÞ ¼ expðuTvÞ
expðuTvÞ þ K

N

ð5Þ

Here, N is total number of training samples and K negative samples
are formulated as a random uniform distribution over total N train-
ing samples. Our optimization objective of contrastive learning is
thus to maximize the above posterior distribution of the positive
and negative samples, which is equivalent to minimize the con-
trastive loss function Lc defined in Eq. (6) [22]. In Eq. (6), v and its
positive sample vþ are from the same distribution Pd, while v and
its negative sample v� are from different distribution Pn. We can
then update student’s feature extractor wS and Embedded network
E by minimizing this contrastive loss.

min
wS ;ET ;ES

Lc ¼ �Eðvþ ;vÞ�Pd ½logðHðvþ; vÞ� � K � Eðv� ;vÞ�Pn ½logð1

� Hðv�; vÞÞ� ð6Þ
A memory bank is used to store the embedded feature vectors of all
training samples from the previous learning iteration. Let V ¼ fv jg
be the memory bank, where j 2 ½0;NÞ. Suppose that the dimension
of embedded feature vector v j is m, hence the memory bank is a
memory buffer with size N �m. During each learning iteration,
Table 1
C-MAPSS – NASA’s Turbofan engine dataset.

Dataset FD001 FD002 FD003 FD004

Train trajectories 100 260 100 249
Test trajectories 100 259 100 248
Operating conditions 1 6 1 6
Fault modes 1 1 2 2

4

we use the alias method, i.e., an efficient sampling method with
many discrete outcomes introduced in [37], to select K vectors from
memory bank V as the negative samples v�

j 2 fv�
1 ;v�

2 ; . . . ;v�
K g. Here,

for a specific feature vector v i, we make sure the indexes of selected
K negative vectors are not equal to i.

After each iteration, we update the memory bank with the cor-
responding entry of each sample with a momentumm. Empirically,
we observe that momentum m barely affects the final perfor-
mance. Hence we set m ¼ 0:9 in all the experiments. Another
hyper-parameter in contrastive learning is the negative sample
size K and we will show its impact on the final results in Section 4.

Finally, we combine both LG from adversarial learning and LC
from contrastive learning together to train the student’s feature
extractor wS. The overall loss LG�overall for training student’s feature
extractor is defined as Eq. (7). We will show howmodel is sensitive
to hyper-parameter b in experiments. We set b ¼ 1:0 in all of our
experiments.

LG�overall ¼ LG þ b � LC ð7Þ
3.3. Knowledge distillation

Logits from the teacher model contain useful information
among classes for a classification task [13]. The ‘soften’ logits con-
trolled by a ‘Temperature’ parameter are often used to guide the
student’s training in a classification task. However, the prediction
output of regression tasks is a single value, but not a probability
distribution over classes in classification tasks. There are no such
logits being soften in regression tasks, hence, we discard the ‘Tem-
perature’ parameter in Eq. (8). But the predictions from teacher are
still helpful as it provides an approximate solution space where
student can easily get to. Therefore, we consider the predictions/
outputs from teacher, ŷT , as the soft labels to guide the training
for student. The KD loss LKD can thus be defined as follows:

LKD ¼ a � kŷS � ŷTk2 þ ð1� aÞ � kŷS � ytruek2 ð8Þ
The first term in Eq. (8) is the ‘soft loss’ as stated in Fig. 1(b), which
measures the L2 distance between student’s predictions ŷS and the
soft labels ŷT . The second term is the hard loss, which measures
the distance between ŷS and the actual labels ytrue. A hyperparame-
ter a adjusts each term’s contribution to the finial loss. Empirically,
a higher a often yields a better student as shown in our experiments
later, which demonstrates the effectiveness of the soft labels (i.e.,
teacher’s predictions) in assisting student’s training.

4. Experiments

In this section, we conduct several experiments to evaluate the
effectiveness of our proposed method in the regression task of RUL
prediction.

4.1. Experimental setup

4.1.1. Dataset and pre-processing
In this paper, the proposed method is evaluated with the Com-

mercial Modular Aero-Propulsion System Simulation (C-MAPSS)
dataset [38]. The C-MAPSS dataset contains four sub-datasets with
different engine operating conditions and faulty modes. Each sub-
dataset can be further divided into training and test data. For train-
ing data, each trajectory represents an engine unit with varying
initial state and consists of 21 run-to-failure sensor measurements.
While the trajectory in test data represents measurements at cer-
tain degradation period. The objective of this dataset is to precisely
predict the remaining useful life of turbofan engines. The details of
each sub-dataset are shown in Table 1.



Fig. 2. Data pre-processing.
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In our experiments, we further separate the training dataset
into training set and validation set with a ratio of 9:1 in terms of
the number of engines, and we use the validation set to select
model parameters. For example, we randomly select 90 engine tra-
jectories for training and 10 trajectories for validation on FD001
and FD003. Similar to previous works [6,7], we discard 7 out of
21 sensor measurements (i.e., sensors T2, P2, P15, epr, farB, Nf-
dmd and PCNfR-dmd) whose readings remain constant in the data
collection process and thus the number of input sensors k is 14.
Then, a sliding window method with window size l and step size
s is applied to segment the training data as illustrated in Fig. 2.

For example, the RUL for the first sample is C � l, and the ðiþ 1Þth
sample has a RUL of C � l� s � i. Here, C is the total cycle life of
an engine. For the test data, we only extract the last segmentation
with the same window size to estimate its RUL. The degradation of
engine is usually negligible at the beginning stage and linearly
increases when engine gets to the end-of-life. Therefore, the
piece-wise linear method [39,6,7] is employed to label the RUL,
where the true RUL is set to the maximal RUL value RULmax if it
is larger than RULmax. In our experiments, we set window size
l ¼ 30 (the dimension of input samples k� l is thus 14�30), step
size s ¼ 1;RULmax ¼ 130, following the previous studies [39,6,7].
Fig. 3. Student netwo

5

4.1.2. Evaluation metrics
To quantify the performance of various models, we adopt two

commonly used evaluation metrics, i.e., Root Mean Square Error
(RMSE) and Score function. Their definitions are shown in Eq. (9)
and Eq. (10), where di ¼ ŷi � yi; ŷi is the model prediction and yi
is the ground truth for the ith sample. Note that the score function
is used to penalize late predictions which may cause worse catas-
trophe than early predictions in real world.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðdiÞ2
vuut ð9Þ

Score ¼

PN
i¼1 e�

di
13 � 1

� �
di < 0

PN
i¼1 e

di
10 � 1

� �
di P 0

8>>><
>>>:

ð10Þ
4.1.3. Network architecture
To validate our proposed CAKD approach, we firstly pre-train a

powerful but luxurious teacher network with 5 LSTM layers (32
rk architecture.



Table 2
Summary of all experimental results.

Methods RMSE Score

FD001 FD002 FD003 FD004 FD001 FD002 FD003 FD004

Student only 15.65 15.88 15.97 17.39 477.73 1404.68 603.55 1809.17
Teacher 13.17 14.47 13.57 16.11 276.39 982.53 349.30 1288.88
Standard KD 15.44 15.57 14.90 16.85 408.71 1130.57 565.58 1361.24
FitNet-L1 15.06 15.24 15.53 17.12 379.33 1160.58 619.64 1423.88
FitNet 15.00 15.15 15.10 16.99 384.20 1097.92 576.57 1369.45
AT 13.48 14.43 13.23 16.03 304.88 1012.43 366.61 1315.04
PKT 13.57 14.41 13.17 15.94 332.28 996.04 350.86 1291.87
RKD-DA 13.63 14.31 13.19 16.07 341.78 1007.93 354.68 1292.23
VID-I 13.68 14.45 14.46 16.09 333.07 1013.10 477.62 1316.60
DML 14.92 15.26 14.54 16.44 402.12 1191.95 480.21 1331.64
Proposed 13.41 14.23 12.95 15.85 293.82 975.96 325.29 1256.82

Table 3
Model comparison between student and teacher.

No. of model parameters No. of FLOPs Memory usage Inference time on edge

LSTM-based teacher 115 K 2.4 M 24.92 MB 1.372 s
CNN-based student 9 K 0.052 M 4.38 MB 0.182 s
Rate 12.8� 46.2� 5.7� 7.5�

Table 4
Performance comparison between dilated-CNN and conventional-CNN.

Scenarios RMSE Score

FD001 FD002 FD003 FD004 FD001 FD002 FD003 FD004

Case I: student only Conventional-CNN 16.45 16.84 16.61 18.4 595.73 1705.02 756.06 1937.46
Dilated-CNN 15.65 15.88 15.97 17.39 477.73 1404.68 603.55 1809.17

Case II: CAKD Conventional-CNN 15.04 15.44 15.04 16.5 411.16 1233.06 528.24 1409.45
Dilated-CNN 13.41 14.23 12.95 15.85 293.82 975.96 325.29 1256.82

Table 5
Effect of each component on model performance.

Methods RMSE Score

FD001 FD002 FD003 FD004 FD001 FD002 FD003 FD004

Student only 15.65 15.88 15.97 17.39 477.73 1404.68 603.55 1809.17
Teacher 13.17 14.47 13.57 16.11 276.39 982.53 349.30 1288.88
KD Only 15.44 15.57 14.90 16.85 408.71 1130.57 565.58 1361.24
Con-FD 16.02 15.4 16.71 16.46 548.9 1351.51 877.57 1394.84
Adv-FD 15.41 15.37 15.01 16.58 418.17 1343.41 575.57 1332.78
Con-FD + KD 14.68 14.85 14.87 16.25 384.08 1068.85 531.9 1330.35
Adv-FD + KD 14.12 14.38 14.63 16.10 375.18 976.16 506.05 1290.06
Proposed CAKD 13.41 14.23 12.95 15.85 293.82 975.96 325.29 1256.82
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hidden units in each layer) as feature extractor and 2 fully-
connected (FC) layers as regressor. With proper parameter tuning,
we obtain a teacher with decent performance on each sub-dataset
and its model weights are then fixed when guiding the student’s
training.

For the student’s feature extractor, we adopt a dilated CNN
structure as [40]. This simple CNN architecture has shown promis-
ing capability of dealing with long-range temporal dependencies
for time series sensory data. Fig. 3 illustrates the details of stu-
dent’s feature extractor and regressor. Note that, 1D CNN(3,2,1)
represents a 1-Dimension convolutional operation with the kernel
size of 3, the stride size of 2 and the dilation of 1. We apply differ-
ent kernel size with different dilation size to ensure that the stu-
dent’s feature extractor has a large receptive field.

The two fully-connected (FC) layers of both teacher’s and stu-

dent’s regressors can be denoted as f reg : R
D �!FC1 R

D
2 �!FC2 R, where D
6

is the dimension of the flattened feature vector. For example, D is
42 for student’s output feature vector as shown in Fig. 3. A non-
linear activation function (i.e., ReLU) and a dropout layer with
dropout rate of 0.5 are added between the two FC layers.
4.2. Comparison with benchmark approaches

In this section, we compare our proposed method with various
benchmark approaches, including Standard KD [13], hint based
transfer (FitNet) [14], FitNet-L1 [16], activation-based Attention
Transfer (AT) [21], Probability Knowledge Transfer between inter-
mediate layers of teacher and student (PKT) [25], Distance-wise
and Angle-wise Relational Knowledge Distillation (RKD-DA) [41],
Variational Information Transfer between Intermediate layers
(VID-I) [42], and Deep Mutual Learning (DML) [43]. In particular,
FitNet-L1 [16] is a variant of FitNet using L1 to measure feature



Fig. 4. Sensitivity analysis of parameters a and K.

Fig. 5. Sensitivity analysis of parameters b and m.
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maps disparity on feature distillation stage. For RKD-DA [41], we
follow the original paper and set kRKD�D ¼ 1 and kRKD�A ¼ 2. For
DML [43], we use 2 networks by following the original paper.

We conducted the experiments with batch size of 64, optimizer
of Adam, learning rate of 1e�3 for the proposed method. We
adopted a grid search for negative sample size K 2 ½20;21; � � � ;210�,
memory bank updating momentum m 2 ½0:1; 0:99� and
a 2 ½0:0;1:0� in Eq. (8). Considering the randomness caused by fac-
tors like model initialization and dropout, the reported results are
averaged over 5 repeats. All experiments and algorithms are imple-
mented with Pytorch framework and the models are trained on a
NVIDIA 2080Ti GPU.

Table 2 presents the evaluation results of different methods on
the four sub-datasets. The CNN-based student training from
scratch (named Student Only) performs the worst in terms of RMSE
and Score. The teacher model performs much better due to its
superior model complexity. By using different KD methods, the
7

performances of the student are improved over all the four data-
sets, which explicitly indicates the effectiveness of the KD methods
on regression tasks. Among all the KD methods, our proposed
CAKD approach performs the best. Moreover, it even outperforms
the teacher on FD002, FD003 and FD004 in terms of RMSE and
Score. The phenomenons of compact student outperforming cum-
bersome teacher are also observed in other works [14,41,44]. For
our proposed CAKD, the possible reason is that the introduction
of contrastive learning makes the student able to learn some dis-
tinct features from other negative samples, which is not available
during teacher’s training process.

Another point to note is that combining feature distillation
based on Euclidean Distance with KD does not always guarantee
better performance than standard KD. For instance, on FD003
and FD004, Fitnet-L1 and FitNet achieve worse performance than
the Standard KD. Besides, transferring specific knowledge, like
the attention maps (AT), feature probabilistic distribution (PKT),
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mutual relations of data samples (RKD-DA), can also help to
improve the performance of compact student. It reveals the diffi-
culty on selecting a proper metric for features disparity measure-
ment and also motivates us on adopting adversarial learning to
automatically learn a latent metric.

Table 3 compares the teacher and student networks from four
perspectives: total number of model parameters, number of
Floating-point Operations (FLOPs), memory usage (including
model size and extra memory requirement during inference), sin-
gle sample inference time on edge device. Here, we employ Rasp-
berry Pi 3B+ as the edge device, which has a 64-bit ARMv8 SoC
and 1 GB RAM. We deploy both the teacher network and the stu-
dent network learned by our CAKD method on Raspberry Pi 3B+
to compare their performance. The student can achieve a compara-
ble performance with the teacher as shown in Table 2, but reduces
12.8 times model parameters, 46.2 times FLOPs and 5.7 times
memory usage as shown in Table 3. Besides, the single sample
inference time of the student is 7.5 times faster than that of teacher
on the edge device. These results indicate the effectiveness of our
proposed method on compressing over-parameterized deep learn-
ing models.

Moreover, to verify the effectiveness of dilated-CNN architec-
ture for student model, we further implemented a conventional-
CNN [30]. Two scenarios are compared between dilated-CNN and
conventional-CNN as shown in Table 4. In Case I, we train both net-
works from scratch. In Case II, we train both networks using the
proposed method with the help of same LSTM-based teacher. Note
that we implemented the conventional-CNN according to original
paper. Due to different data pre-processing, the performance of
self-implemented conventional-CNN which is trained from scratch
is better than those reported in [30], and we report the results
derived from our implementation for a fair comparison. From
Table 4, we can observe that the dilated-CNN performs better than
conventional-CNN in both two scenarios. Moreover, the proposed
CAKD can also help to improve the conventional-CNN student
which implies the effectiveness of the proposed method.

4.3. Model ablation study

There are three key components in our CAKD method, i.e.,
adversarial and contrastive learning in feature distillation (FD),
and KD. To investigate the contribution of each component, we
derived the following model variants for the ablation study.

� KD only: student only trained with KD.
� Con-FD: student only trained with FD using contrastive
learning.

� Adv-FD: student only trained with FD using adversarial
learning.

� Con-FD + KD: student trained with contrastive FD and KD.
� Adv-FD + KD: student trained with adversarial FD and KD.
� CAKD: student trained with our proposed method, which com-
bines KD with contrastive and adversarial FD.

Table 5 presents the experimental results of different variant on
all the four sub-datasets. It is obvious that comparing with Student
Only, all derived variants have consistent performance improve-
ment except for Con-FD on FD001 and FD003. We can find that
both contrastive feature learning and adversarial feature learning
can further assist KD on improving model performance. Comparing
with contrastive learning, adversarial learning is more capable of
automatically learning a latent suitable metric to align the feature
maps especially when teacher and student have dissimilar network
architectures. This is also supported by our results in Table 5 that
adversarial learning contributes more than contrastive learning
for performance improvement.
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4.4. Sensitivity analysis

There are four important hyper-parameters in our proposed
method, which are listed as follows:

� a: smoothing parameter in Eq. (8), which controls the contribu-
tion of soft-loss and hard-loss.

� K: number of negative samples in contrastive learning.
� b: weight coefficient of contrastive loss in Eq. (7).
� m: the momentum of updating the memory bank.

Fig. 4 illustrates how parameter a (upper row) and K (lower
row) affect model performance in terms of RMSE and Score. It is
clear that a higher a often yields better results, indicating teacher’s
soft labels are more informative. In our experiments, we set a ¼ 0:8
for FD001, FD002 and FD004, and a ¼ 0:6 for FD003. For the size of
negative samples K, intuitively, the higher K values lead to better
model performance. However, we observed that the performance
starts to decrease on FD001, FD002 and FD004 when K is larger
than 512. The reason may be that the student network is too shal-
low to disparate all the negative samples with the positive sample.
Therefore, we set K ¼ 512 in our experiments.

Fig. 5 shows the impacts of b (upper row) and m (lower row) on
model performance in terms of RMSE and Score. It can be found
that the RMSE and Score of CAKD start to decrease with the incre-
ment of b and achieve the lowest values when b is around 1.0. The
performance becomes worse if we further increase b. It is clear that
for b, a reasonable value range is ½0:5;2�. Therefore, we set b ¼ 1:0
for all the experiments. Note that b ¼ 0 is a special case that only
using adversarial learning in feature distillation. For the memory
bank updating momentum m, it is clear that model performance
is not sensitive to this hyper parameter. In all the experiments,
we set m ¼ 0:9.
5. Conclusion

In this paper, we proposed a contrastive adversarial knowledge
distillation (CAKD) method for model compression in a regression
task, i.e., machine remaining useful life (RUL) prediction. Specifi-
cally, we distilled knowledge from a complex long short-term
memory (LSTM) network to an efficient convolutional neural net-
work (CNN) for RUL prediction task. Experiments have been con-
ducted with the popular C-MAPSS dataset which contains four
sub-datasets. The results show that the proposed CAKD signifi-
cantly outperforms conventional KD methods for model compres-
sion in the regression task of RUL prediction. By using the proposed
CAKD, the student even performs better than the teacher in three
of four sub-datasets. This clearly indicates the effectiveness of
the proposed method in the regression task of RUL prediction.
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