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Contrastive Domain Adaptation for Time-Series via
Temporal Mixup

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee-Keong Kwoh and Xiaoli Li

Abstract—Unsupervised Domain Adaptation (UDA) has
emerged as a powerful solution for the domain shift problem
via transferring the knowledge from a labeled source domain to
a shifted unlabeled target domain. Despite the prevalence of UDA
for visual applications, it remains relatively less explored for time-
series applications. In this work, we propose a novel lightweight
contrastive domain adaptation framework called CoTMix for
time-series data. Unlike existing approaches that either use statis-
tical distances or adversarial techniques, we leverage contrastive
learning solely to mitigate the distribution shift across the dif-
ferent domains. Specifically, we propose a novel temporal mixup
strategy to generate two intermediate augmented views for the
source and target domains. Subsequently, we leverage contrastive
learning to maximize the similarity between each domain and its
corresponding augmented view. The generated views consider
the temporal dynamics of time-series data during the adaptation
process while inheriting the semantics among the two domains.
Hence, we gradually push both domains towards a common
intermediate space, mitigating the distribution shift across them.
Extensive experiments conducted on five real-world time-series
datasets show that our approach can significantly outperform
all state-of-the-art UDA methods. The implementation code of
CoTMix is available at github.com/emadeldeen24/CoTMix.

Impact Statement—Unsupervised domain adaptation (UDA)
aims to reduce the gap between two related but shifted domains.
Current UDA methods for time-series data are based on adver-
sarial or discrepancy approaches. These methods are complex
in training and cannot efficiently address the large domain
shift. Therefore, in this work, we propose a time-series UDA
framework based purely on contrastive learning, which is simpler
in implementation and training. To leverage contrastive learning
to mitigate domain shift, we propose a temporal mixup strategy
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to generate augmentations that are robust to the domain shift
and can move both domains towards an intermediate domain. We
show the efficacy of our proposed framework against baselines
and validate the impact of our proposed temporal mixup against
other augmentations.

Index Terms—Time-series, Unsupervised Domain Adaptation,
Contrastive Learning, Temporal Mixup

I. INTRODUCTION

The advance in deep learning has shown a significant
performance improvement in many time-series applications
e.g., healthcare and manufacturing. Unfortunately, such per-
formance can only persist under the assumption that training
and testing data are drawn from the same distribution. In
reality, training and testing data can substantially vary in
their temporal characteristics and working conditions, causing
the deep learning model to significantly underperform. This
phenomenon is well-known as the domain shift problem.
Unsupervised Domain Adaptation (UDA) aims to reduce the
domain shift by adapting a model trained on a labeled source
domain to a shifted unlabeled target domain. Despite the dense
literature on UDA for visual applications [1], [2], [3], it is still
less explored for time-series data.

Existing works in time-series UDA follow two mainstreams
to adapt the source and target domains. One paradigm lever-
ages a statistical distance such as maximum mean discrepancy
(MMD) to minimize the discrepancy between source and
target domains [4]. The other paradigm utilizes an adversarial
scheme by training a domain discriminator to mitigate the
domain shift [5], [6], [7]. Despite the acclaimed performance
of these approaches, they still suffer the following limitations.
First, they ignore the temporal dependencies in time-series data
while matching the source and target distributions, leading
to sub-optimal adaptation performance. Second, most of the
existing discrepancy-based approaches depend on reducing a
distance measure, which may struggle to align distributions
with large domain shifts [8]. Third, the adversarial-based
approaches are usually complex to train and rely on minimax
optimization, which is hard to converge to a satisfactory local
optimum [9]. Last, both paradigms attempt to directly adapt
the target domain distribution towards the source domain using
the source domain knowledge, which can be less effective
when aligning distant domains [10].

Meanwhile, contrastive learning has shown great success
and proficiency in time-series representation learning tasks
[11], [12]. One of the key factors to this success is the careful
design of augmentations [13]. Existing augmentation tech-
niques, e.g., adding noise, permutation, and time/frequency
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shift have shown competent performance in time-series repre-
sentation learning tasks. However, a proper augmentation that
can consider the temporal dependencies in time-series data
while being robust to the distribution shift is yet to exist.

In this work, we propose a novel framework (CoTMix) that
exploits contrastive learning solely to mitigate the domain
shift in time-series data. The key motivation behind using
contrastive loss solely is to provide a simple yet effective
framework for unsupervised domain adaptation, that can be
more powerful than discrepancy-based approaches while being
less complex than adversarial-based approaches. Contrastive
loss provides a powerful tool for learning a common feature
representation between the source and target domains provided
having suitable augmentations. In addition, the contrastive loss
is particularly well-suited for unsupervised domain adaptation,
as it does not require labeled data from the target domain,
and its supervised version enables us to utilize the available
labels in the source domain. However, since traditional aug-
mentations are not well-suited to address the domain shift,
we propose a novel cross-domain temporal mixup strategy
to address this challenge. In particular, the temporal mixup
strategy generates two new intermediate domains namely the
source-dominant and the target-dominant domains, as shown
in Fig. 1. These two intermediate domains act as augmented
views for the source and target domains in contrastive learning.
Moreover, they are designed in a way that preserves the
semantics of the dominant domain while learning the temporal
characteristics of the less-dominant domain. Subsequently,
we leverage in-domain contrastive learning to maximize the
similarity between the source and the source-dominant do-
mains, as well as maximizing the similarity between the target
and target-dominant domains. Unlike the previous works that
directly push the target domain towards the source domain
using distance metrics or adversarial training, our proposed
approach can progressively map the source and target domains
towards an intermediate domain.

To summarize, our main contributions are as follows:
• We propose CoTMix, a novel contrastive learning-based

framework for time-series UDA. CoTMix deploys con-
trastive loss solely based on our Temporal Mixup strategy,
making a unique way of addressing the problem of
domain shift for time series data.

• We propose a novel cross-domain temporal mixup, a
simple, generic, and effective strategy to generate new
augmented views for in-domain contrastive learning at
both source and target domains sides. This operation
aims to fit contrastive learning to serve the adaptation
objective.

• We conduct extensive experiments on five real-world
time-series domain adaptation datasets. The results show
that our CoTMix significantly outperforms state-of-the-
art UDA methods.

II. RELATED WORKS

1) Unsupervised Domain Adaptation: UDA has drawn
wide attention as a solution to reduce the gap between source
and target distributions in different visual applications. Some

methods focused on matching the statistical distribution of
embeddings to learn domain invariant representations. For
example, DDC [14] trained an adaptation layer to jointly
optimize classification performance and domain invariance
based on MMD. Also, HoMM [15] explored aligning higher-
order statistics for domain matching. DSAN [16] proposed
local MMD to align relevant subdomain distributions. Last,
the concept of manifold criterion was introduced as a distance
measure to validate the distribution matching across domains
[17].

On the other hand, most methods deployed adversarial
training for UDA. For example, DANN [18] proposed a
gradient reversal layer. DIRT-T [19] added iterative refinement
training to improve the adversarial training. CDAN [20] ap-
plied the adversarial adaptation to the information conveyed
from the classifier predictions. Wang et al. [21] proposed a
re-weighted adversarial domain adaptation with a triplet loss
on the confusing domain to leverage both source samples
and pseudo-labeled target samples. Triplet loss has also been
deployed in [22] to adjust the weights of pair-wise samples in
intra-domain and inter-domain. Finally, Xu et al. [23] included
the mixup operation on instance- and feature-level to improve
the adversarial training.

Furthermore, some methods explored contrastive learning
to enhance the performance of the discrepancy measure [24],
[25]. In addition, contrastive learning has been also deployed
in domain generalization. For example, the original sample-
to-sample relations were replaced with proxy-to-sample re-
lations to enhance the impact of positive alignment [26].
Also, contrastive learning was utilized along with self-training
for gaze estimation [27]. For video UDA, [28] contrast the
embeddings of unlabeled videos at different speeds with a
background mixing mechanism. While these UDA techniques
are proposed for visual applications, the problem of unsuper-
vised domain adaptation for time-series data remains relatively
under-explored, which is our focus in this work.

2) Time-Series UDA Methods: Few works were proposed
for time-series UDA, despite its importance in many real-
world applications. Some methods aimed to align the domains
based on the feature statistical distribution. For example,
AdvSKM [8] reformed the MMD metric with a hybrid spectral
kernel network to improve the general MMD metric. In
addition, Net2Net [29] employed MMD loss between the
new data and the previous one to serve as a quick learning
mechanism for Fault diagnosis data. Also, TS-SASA [30]
aligned the intra- and inter-variable attention with MMD. The
other methods deployed adversarial training used in visual
UDA but with different architectures. For instance, VRADA
[31] used a variational recurrent neural network for feature
extraction. Also, CoDATS [5] and CALDA [32] used DANN
methodology with a 1D-CNN feature extractor and multi-layer
fully connected layers. Some of these methods contributed to
the design of the methodology. For example, Jin et al. [6]
designed an unshared backbone, and a shared attention-based
module to extract domain-specific information with adversarial
training. In addition, SLARDA [33] designed an autoregressive
domain discriminator with a teacher model to align the class-
wise distribution of the target domain. Also, Zhao et al. [34]
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Fig. 1: The overall structure of our CoTMix framework. The cross-domain temporal mixup strategy generates the source-
dominant xsd, and the target-dominant xtd domains. We use a fixed 0.5 < λ < 1 to ensure that one domain has more
contribution in the generated samples. In addition, we aggregate T timesteps from the less-dominant domain while the mixup
to learn its temporal information. The generated domains act as augmented views for the in-domain contrastive learning, which
is performed on the output probabilities.

implemented an adversarial UDA algorithm with center loss
to constrain invariant feature space for EEG data. Finally,
AdaTime [35] was the first attempt to provide a benchmarking
suite for time-series UDA, in which it unifies the backbone,
datasets, and training schemes to ensure fair evaluation of
time-series UDA methods.

Unlike these works that either follow discrepancy or ad-
versarial training to move one domain towards the other, we
propose to move each domain towards the other with a pure
contrastive learning technique.

3) Contrastive Learning: The purpose of contrastive learn-
ing is to learn invariant representations based on data aug-
mentation. Recently, many works have been proposed for
self-supervised contrastive learning in visual applications [13],
[36], [37] and showed promising results. The success of these
methods encouraged exploring contrastive learning for time-
series data. For example, TNC [38] exploited contrastive learn-
ing to ensure that neighboring timesteps are distinguishable
from the non-neighboring timesteps. In addition, TS-TCC [11]
proposed instance-wise temporal and contextual contrasting at
the timestep level, while TS2VEC [12] proposed contrastive
learning in a hierarchical way for an arbitrary semantic level.

These methods rely on augmentations that can fit the repre-
sentation learning tasks. However, they can not fit with UDA
scenarios. Therefore, we propose a cross-domain temporal
mixup strategy to generate augmented views that can be robust
to the domain shift problem and narrow the gap between
distant domains.

III. PROPOSED METHOD

A. Problem Definition

We address the problem of unsupervised domain adaptation
for time-series data. Specifically, we have a labeled source do-
main Ds = {(xi

s, y
i
s)}

ns
i=1 with ns samples, and an unlabeled

target domain Dt = {xj
t}

nt
j=1 with nt samples. Both domains

have samples with a length of L timesteps and share the same
label space, i.e., yis, y

j
t ∈ {1, 2, . . .K}, where K denotes the

number of classes. It is assumed that there is a distribution
shift between the two domains (i.e., P (xs) ̸= P (xt)). Given
the source and target data, we aim to train a shared model that
consists of a feature encoder F(·) and a classifier C(·) to find
a unified space that can successfully classify the unlabeled
target data.

B. Overview

In this section, we propose CoTMix, a Contrastive domain
adaptation framework via Temporal Mixup for time-series
data. CoTMix consists of two main components: the cross-
domain temporal mixup strategy and the in-domain contrasting
at the source and target sides. Fig. 1 illustrates the overall
structure of our proposed approach, which can be trained in
an end-to-end manner.

C. Temporal Mixup

We propose a cross-domain temporal mixup strategy, in
which we generate two new intermediate domains namely
the source-dominant and the target-dominant domains using
the mixup operation [39]. Each of these domains should
preserve the characteristics of one dominant domain while
considering the temporal information from the other less-
dominant domain. To do so, unlike the traditional mixup, we
use a fixed mixup ratio 0.5 < λ < 1, such that one domain will
have more contribution than the other in the newly generated
domain. In addition, we learn the temporal information from
the less-dominant domain by aggregating multiple forward
and backward timesteps to be mixed with one timestep from
the dominant domain, as illustrated in Fig. 1. For instance,
we generate the source-dominant samples by mixing each
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timestep from the source domain with the average value of
T timesteps from the target domain (T2 backward timesteps
and T

2 forward timesteps), such that the source ratio is λ
and the target ratio is 1 − λ. We calculated the mean of
timesteps as inspired by the moving average method [40].
Averaging timesteps has the advantages of eliminating short-
term fluctuations and reducing the effect of extreme values.

Formally, given a source domain sample xs and a target
domain sample xt, we generate each timestep i in the source-
dominant domain as follows:

xi
sd = λxi

s + (1− λ)
1

T

i+T
2∑

j=i−T
2

xj
t ; 0.5 < λ < 1 (1)

where xsd = (x1
sd, x

2
sd, . . . , x

L
sd) represents the generated

source-dominant sample, T is the mixup window length, and
L is the sample length. A similar process is followed to
generate the target-dominant samples, which can be formalized
as follows:

xi
td = λxi

t + (1− λ)
1

T

i+T
2∑

j=i−T
2

xj
s, 0.5 < λ < 1 (2)

where xtd = (x1
td, x

2
td, . . . , x

L
td) represents the generated

target-dominant sample.

D. Contrastive Adaptation

Given the generated source-dominant and target-dominant
mixed domains, in addition to the original source and target
domains, we use the feature encoder and the classifier to gen-
erate the probability vectors for the four domains. As inspired
by [41], we leverage the probability vectors in the InfoNCE
loss [42] to maximize the similarity between each domain
and its corresponding intermediate view. Since we contrast
each domain with its dominant mixed domain, we benefit
from several advantages. First, we close up the gap between
the two domains regardless of the shift distance, because
the model keeps learning about the less-dominant domain
on both sides progressively throughout training. Second, in
addition to mitigating the domain shift, in-domain contrastive
learning improves the learning capability of the model about
each domain separately. Last but not least, this approach
is simpler in implementation and training than traditional
complex adversarial training approaches.

Fig. 1 shows the overall structure of our framework. For the
source domain side, we minimize the class-aware contrastive
loss as well as the source classification loss. For the target
domain side, we minimize the unsupervised contrastive loss
and the entropy minimization loss. Next, we will discuss the
losses on each side in more detail.

1) Source Domain Side.: Since we have access to the
source domain labels, we leverage these labels to optimize
both the in-domain class-aware contrastive loss and the stan-
dard cross-entropy loss. The class-aware contrastive learning,
as inspired by [43], benefits from the available labeled data to
include more positive pairs in the contrastive loss. In specific,
for each anchor sample, we consider all the samples having the

same class label within the mini-batch as positive pairs. In this
way, we consider the semantic information between samples
and avoid contrasting against false negatives, which could
improve the quality of the learned representations. Moreover,
by contrasting with multiple possible positive pairs (which are
mixed with target domain data), we increase the chance of
narrowing the gap between the anchor sample with samples
having the same class label in the less-dominant domain
(i.e., target domain), which further improves the class-wise
alignment in the target domain.

Formally, given the ns source domain samples and the
ns generated source-dominant samples, the overall samples
become 2ns. We generate the output probabilities ps =
C(F(xs)) and psd = C(F(xsd)). To this end, the over-
all source samples become ({xl

so, y
l
so}l=1...2ns ), and their

corresponding probabilities are pso. In addition, we assume
that the class label is the same for any two corresponding
samples from both domains, i.e., yis = yisd. Assuming that
k ∈ I ≡ {1 . . . 2ns} represents the index of an arbitrary
sample (from either source or source-dominant domains), and
A(k) ≡ I\{k}. The set of indices of all samples with the same
class as an anchor sample xk

so will be U(k) = {u ∈ A(k) :
yuso = ykso}. Therefore, we can formulate the probabilistic
class-aware contrasting loss LCAC as follows.

LCAC =
∑
k∈I

−1

|U(k)|
∑

u∈U(k)

log
exp

(
pk
so · pu

so/τ
)∑

a∈A(k) exp (p
k
so · pa

so/τ)
,

(3)

where · symbol denotes the inner dot product, τ is a
temperature parameter, and |U(k)| is the cardinality of U(k).

In addition to the class-aware contrasting, we also train the
model to minimize the cross-entropy loss as follows.

Lcls = −E(xs,ys)∼Ps

K∑
k=1

1[ys=k] logps(k). (4)

2) Target Domain Side.: Considering the target domain,
we do not have access to its label information. Therefore,
we can only contrast its samples in an unsupervised manner.
Given the nt target domain samples and its corresponding
nt target-dominant mixed domain samples, then the total
number of samples becomes 2nt. We calculate the output
probabilities pt = C(F(xt)) and ptd = C(F(xtd)). Therefore,
the overall target samples become ({xl

to}l=1...2nt
), and their

corresponding probabilities are pto, such that for each target
sample xi

t, 1 ≤ i ≤ nt, it forms a positive pair with its
corresponding target-dominant sample xi

td and vice versa.
Assuming that pto = (p1

t ,p
2
t , . . . ,p

nt
t ,p1

td, . . . ,p
nt

td ), where
pk
to = pk

t if k ≤ nt, and pk
to = pk−nt

td otherwise. For an
anchor sample indexed k ∈ I ≡ {1 . . . 2nt}, A(k) ≡ I \ {k},
we define f(k) as the index of the positive pair of k, such that
f(k) = k+nt if k ≤ nt, and f(k) = k−nt otherwise. Next,
we design the probabilistic unsupervised contrastive loss LUC

as follows.
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LUC =
−1

2nt

∑
k∈I

log
exp

(
pk
to · p

f(k)
to /τ

)
∑

a∈A(k) exp
(
pk
to · pa

to/τ
) . (5)

In addition, we minimize the entropy on the unlabeled target
domain, formulated as follows.

Lent = −Ext∼Pt
[p⊤

t logpt]. (6)

Leveraging this entropy minimization loss forces the classi-
fier to be confident about its prediction for the target domain
data [19].

E. Overall Objective

Our proposed CoTMix is trained with a simple procedure.
First, we mix the input signals from the source and target
domains to generate the source-dominant and the target-
dominant mixed samples as in Equations 1 and 2, respectively.
Next, we develop the class-aware contrastive training in the
source domain side, and the unsupervised contrastive training
in the target domain side as in Equations 3 and 5, to minimize
LCAC and LUC respectively. Besides minimizing the contrastive
losses, we also minimize the standard cross-entropy loss Lcls
on the labeled source domain, as well as the conditional
entropy loss Lent on the unlabeled target domain. Overall,
the training objective is to minimize these losses combined
as follows.

min
F,C

Loverall = β1Lcls + β2LCAC︸ ︷︷ ︸
Source side

+β3Lent + β4LUC︸ ︷︷ ︸
Target side

, (7)

where the hyperparameters β1, β2, β3, and β4 control the
contribution of each loss on the overall performance.

IV. EXPERIMENTAL SETUP

A. Datasets

To evaluate our proposed approach, we choose five real-
world time-series datasets in three applications, i.e., sleep stage
classification, human activity recognition, and fault detection.
These datasets have different characteristics in terms of com-
plexity, the number of samples, the sample length and type,
the number of sensors, and the severity of the domain shift.
In the first four datasets, we treat data from each subject as
a separate domain, since different subjects may have distinct
behaviors, leading to distribution shifts.

The first dataset is SSC for sleep stage classification, and
it includes classifying electroencephalography (EEG) signals
into one of five classes, i.e., Wake (W), Non-Rapid Eye
Movement (N1, N2, N3), and Rapid Eye Movement (REM).
We selected a single EEG channel (i.e., Fpz-Cz) from the
sleep-EDF [44] dataset, following previous studies [45].

The second dataset is UCIHAR for Human Activity Recog-
nition [46]. It includes three sensors’ readings i.e., accelerom-
eter, gyroscope, and body sensors, collected from 30 subjects.

The third dataset is HHAR (Heterogeneity Human Activity
Recognition) dataset [47], and it was collected from 9 different

TABLE I: Details of the adopted datasets (C: #channels, K:
#classes, L: sample length).

Dataset C K L # training samples # testing samples

SSC 1 5 3000 14280 6130
UCIHAR 9 6 128 2300 990
HHAR 3 6 128 12716 5218
WISDM 3 6 128 1350 720
Boiler 20 2 36 26785 44687

users using smartphones and smartwatches. We consider the
data from the Samsung smartphone following [35].

Forth, the WISDM dataset [48] is also for human activity
recognition, and it was collected with accelerometer sensors
from 36 subjects. The objective in the latter three datasets
is to classify sensors’ readings into one of six activities, i.e.,
walking, walking upstairs, downstairs, standing, sitting, and
lying down.

Last, Boiler fault detection dataset [30] describes three
boilers, where each one is considered as a separate domain.
The objective is to help predicting the faulty blowdown valve
of each boiler. The data is imbalanced because obtaining faulty
samples in the mechanical system is hard.

Since each dataset contains numerous subjects (i.e., do-
mains), we selected five random scenarios as in [5], [8]. Each
scenario represents the ID of the source subject (domain) and
the ID of the target subject (domain) within their respective
datasets. For example, scenario 16 → 1 in the SSC dataset
indicates that the source is subject #16 and the target is subject
#1. More details about the datasets are illustrated in Table I.
We included three large-scale datasets, i.e., SSC, HHAR,
and Boiler, and two small-scale datasets, i.e., UCIHAR and
WISDM datasets. This testifies to the capability of our pro-
posed framework to adapt different scales of datasets/domains.

B. Baselines

We compared our proposed method with seven state-of-the-
art UDA methods that span both discrepancy- and adversarial-
based schemes as follows:

• FCN: Fully Convolutional Network, representing the
source-only experiment.

• HoMM [15]: Higher-order Moment Matching.
• DSAN [16]: Deep Subdomain Adaptation.
• DANN [18]: Domain-Adversarial Training of Neural Net-

works.
• CDAN [20]: Conditional Domain Adversarial Network

for Adaptation.
• DIRT-T [19]: Decision-boundary Iterative Refinement

Training with a Teacher.
• CoDATS [5]: Convolutional deep Domain Adaptation

model for Time Series.
• AdvSKM [8]: Adversarial Spectral Kernel Matching.

C. Implementation Details

1) Dataset preprocessing: We split each domain into
70/30%, where the 70% splits in both domains are for training,
while the 30% in the source domain is treated as a validation
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TABLE II: Detailed results of each cross-domain scenario in the five adopted datasets in terms of MF1 score. CoTMix*
indicates deploying unsupervised contrastive loss in the source side. The results are based on minimizing the DEV risk. The
best results are in bold, and the second-best results are underlined.

Dataset Scenario FCN HoMM DSAN DANN CDAN DIRT-T CoDATS AdvSKM CoTMix* CoTMix

16→1 52.44±4.78 55.57±2.00 58.76±2.02 58.78±4.76 60.95±1.13 54.4±12.46 60.03±1.18 57.80±0.69 59.85±4.39 60.97±4.32
9→14 64.35±5.66 63.66±1.48 69.45±4.04 64.61±0.93 60.5±10.01 71.33±3.72 52.2±10.55 64.27±2.93 65.48±1.45 65.80±3.15
12→5 56.07±3.07 55.87±2.93 64.92±1.65 65.47±0.95 65.01±1.34 64.99±4.98 56.96±2.41 55.12±2.52 64.03±4.47 61.59±1.98
7→18 59.39±4.94 67.49±1.51 68.69±0.99 68.88±2.81 67.02±1.13 69.94±0.43 68.64±2.93 67.31±3.83 64.79±1.30 73.34±1.27
0→11 43.80±5.83 50.93±4.31 37.43±2.92 31.13±1.74 30.8±10.69 35.62±3.79 41.12±5.14 55.11±4.56 48.82±4.60 51.16±3.71

SSC

AVG 55.21 58.70 59.85 57.77 56.86 59.26 55.79 59.92 60.59 62.57

2→11 58.39±3.87 73.38±7.34 75.58±9.18 77.8±18.26 71.51±8.84 88.44±9.23 51.81±4.67 65.74±2.69 99.01±0.71 97.17±4.00
12→16 56.06±2.80 59.84±1.43 61.71±1.75 63.26±2.49 54.66±2.91 58.47±2.98 54.81±2.76 60.09±1.40 66.59±5.53 77.56±1.34
9→18 58.87±5.93 60.0±11.83 67.10±4.61 57.49±7.77 40.94±3.18 65.9±13.25 31.83±8.89 53.70±4.61 68.46±5.64 75.29±5.62
6→23 43.59±8.34 90.48±0.80 93.22±2.49 95.86±1.84 61.31±9.02 90.56±8.73 81.23±4.07 79.31±8.95 90.94±2.78 91.74±3.29
7→13 87.45±6.20 85.94±2.52 88.82±3.08 91.71±0.84 82.1±11.91 93.73±0.56 80.9±13.74 88.89±3.12 89.80±1.66 88.47±3.27

UCIHAR

AVG 60.87 78.28 81.07 80.89 64.66 82.54 65.12 74.62 82.96 86.05

0→6 54.26±3.46 63.58±2.24 58.81±7.19 46.54±0.61 45.52±0.94 52.63±9.77 44.73±1.65 45.52±0.91 66.81±1.79 69.34±4.66
1→6 64.09±4.02 88.49±2.00 93.42±0.64 90.73±1.97 92.99±0.70 93.10±2.06 91.98±1.01 92.99±0.72 90.49±0.68 91.97±2.01
2→7 38.03±4.42 47.12±4.27 45.61±0.51 46.58±3.13 54.12±7.12 63.49±1.95 47.56±5.04 54.11±7.12 62.16±0.41 68.76±8.54
3→8 79.40±1.44 79.23±1.13 98.44±0.23 83.4±10.12 98.17±0.37 87.1±10.06 91.83±4.56 98.17±0.37 95.74±0.81 96.01±0.85
4→5 78.75±4.09 84.07±1.19 98.47±0.32 95.83±0.28 96.39±1.37 97.13±0.44 92.52±3.14 96.39±1.37 97.03±0.62 96.61±1.70

HHAR

AVG 62.90 72.50 78.95 72.62 77.43 78.69 73.72 77.43 82.45 84.54

35→31 40.98±7.60 66.29±0.84 57.25±6.07 52.21±1.09 49.02±4.20 46.75±3.54 40.96±19.0 61.91±6.95 48.77±3.15 47.68±6.97
7→18 35.25±4.87 48.67±6.31 52.77±2.23 41.16±6.62 57.65±0.18 57.89±0.15 42.00±3.75 49.84±5.31 56.59±2.87 74.88±2.75

20→30 61.52±2.14 65.28±2.45 63.39±0.70 71.98±10.1 65.50±0.61 65.49±0.62 69.65±7.60 69.35±1.38 90.64±0.14 77.90±1.78
6→19 49.09±4.34 63.78±4.35 53.35±5.37 59.09±3.57 44.03±0.81 45.16±0.00 70.6±12.51 54.89±4.14 56.74±8.75 64.27±1.99

18→23 49.55±9.12 62.11±7.57 55.76±1.46 48.00±0.90 50.16±0.44 50.89±0.40 48.2±15.11 51.3±10.33 67.99±4.24 66.87±2.02
WISDM

AVG 47.28 61.23 56.51 54.48 53.27 53.24 54.27 57.46 64.15 66.32

1→2 49.09±0.45 51.09±1.70 47.13±0.36 46.81±0.36 47.97±0.86 47.97±1.20 47.22±0.10 49.69±0.68 45.90±0.03 50.84±1.62
1→3 70.07±9.02 90.41±1.46 91.61±1.86 90.53±0.95 88.12±1.51 61.46±11.6 89.58±1.75 91.72±1.09 91.41±0.88 92.37±1.01
3→1 63.04±3.25 49.05±0.08 47.92±0.00 48.97±0.34 48.91±0.54 47.85±0.09 53.15±6.51 51.50±4.18 72.57±3.31 77.88±2.81
3→2 49.38±5.05 74.61±10.3 77.69±9.31 77.53±11.2 70.22±10.0 75.69±16.3 77.62±3.21 76.98±5.36 43.62±0.97 50.63±4.50
2→1 49.22±0.12 53.23±4.67 46.84±4.00 47.48±4.32 48.28±6.67 49.11±2.60 44.67±3.12 48.12±3.50 49.23±0.07 47.92±0.00

Boiler

AVG 56.15 63.68 62.24 62.26 60.70 56.42 62.45 63.60 60.54 63.93

set for the risk calculation, and the 30% in the target domain
acts as a test set. In addition, all the splits were normalized
based on the training statistics [5]. We applied a sliding win-
dow of 128 for the three human activity recognition datasets,
but for the SSC dataset, we kept the original sample length of
3000 timesteps.

Featu r es

CN N  b lock CN N  b lock CN N  b lockD r op ou t 
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Aver age 
Pool i n g

1D -Con volu t i on  
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M ax Pool i n g
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Fig. 2: Feature encoder in our CoTMix framework. The pair
(k, s) refers to the kernel size and stride respectively.

2) Feature encoder: We adopted a convolutional neural
network as our feature encoder [11], [49]. As shown in Fig. 2,
our feature encoder consists of three similar convolutional
blocks. The first one is followed by a dropout layer, while the
last one is followed by an adaptive average pooling layer. Each
block contains a 1D-convolutional layer, a batch normalization
layer, a non-linearity ReLU activation function, and a 1D-
maxpooling layer. The filter sizes of the 1D-convolution layers
are set to 64, 128, and 128 in the three blocks respectively.
The kernel size and stride values differ from one dataset to
the other. We set this pair as (5,1) for UCIHAR, HHAR, and

WISDM datasets as they have the same sequence length L. For
the SSC dataset, we set it as (25,6) due to its longer sequence
length. This encoder is followed by a single fully connected
layer for classification.

3) Unified training scheme: To ensure a fair evaluation,
we unified the way of training, the backbone encoder, the
hyperparameters search methodology, and the risk minimiza-
tion setting for our proposed approach as well as all the
baselines, as inspired by AdaTime benchmark [35]. In specific,
we trained all the models for 40 epochs with a batch size
of 32 and optimized the neural network weights using Adam
optimizer with a learning rate of 1e-3. The reported results
show the average and the standard deviation performance of
the last epoch of training, for three repeated experiments with
three different seeds.

To choose the hyperparameters of our CoTMix, i.e., λ,
β1, β2, β3, β4, as well as the hyperparameters of the base-
lines, we performed a hyperparameter sweep with 100 trials.
The selection of these hyperparameters was from predefined
ranges using uniform sampling. Based on this hyperparameters
search, we picked the best model that minimizes the realistic
Deep Embedded Validation (DEV) risk [50], [35]. This risk
does not consider any target labels to be calculated. Instead,
it considers the highly correlated source features to the target
features via importance weighting schemes, which give lower
weights to the less correlated features. Despite that choosing
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TABLE III: Selected values of the hyperparameters in the
adopted datasets. The first row indicates the range of hyper-
parameter search. The range of T is specified with respect to
L, however, we reported the selected timesteps values.

β1 β2 β3 β4 λ T

Range [0.1, 1] [0.001, 1] [0.001, 1] [0.001, 1] [0.5, 1) [0, 0.5L]

SSC 0.96 0.1 0.05 0.1 0.79 150
UCIHAR 0.78 0.1 0.20 0.1 0.90 14

HHAR 0.80 0.1 0.05 0.1 0.52 14
WISDM 0.98 0.1 0.05 0.1 0.72 6
Boiler 0.92 0.1 0.15 0.1 0.88 10

the hyperparameters based on this risk may not yield the best
performance on the target domain, however, it ensures a fair
and realistic evaluation scheme and prevents overestimated
results. We included the ranges, as well as the values of the
selected hyperparameters, in Table III.

V. RESULTS

A. Comparison with Baselines

Table II reports the macro-F1 (MF1) scores of our proposed
framework against the other competing state-of-the-art meth-
ods on the five benchmark datasets. The MF1-score metric is
more suitable to reflect the true performance of the imbalanced
time-series data. The results show that our proposed CoTMix
approach outperforms adversarial and discrepancy baselines
significantly in the overall performance across the five datasets,
indicating its effectiveness. For the SSC dataset, it achieves
a 2.65% improvement over the second-best baseline. For
UCIHAR, HHAR, and WISDM datasets, it was able to achieve
3.51%, 5.59%, and 5.09% improvement over the second-best
method. Last, for the challenging Boiler dataset, it improves by
0.25% over the HoMM method. Since the temporal mixup op-
eration is being performed on the input space, we notice more
performance improvement in the human activity recognition
datasets, which have less complex time-series data, compared
to the more complex SSC and Boiler datasets.

Additionally, our CoTMix shows a significant improvement
in big domain shifts. For example, in the HHAR dataset, we
find that scenario 2→7 suffers a big shift, indicated by the
poor source-only performance of 38.03%. We find that CoT-
Mix improved its performance by 30.73% reaching 68.76%.
Despite that CoTMix achieves the best average performance
over the baselines, it can still achieve less performance than
some baselines on some cross-domain scenarios. For example,
in the HHAR dataset, DSAN shows a better performance
than CoTMix in three cross-domain scenarios. However, the
difference is not significant with a maximum of 2.45% in
the worst case, and both methods are already close to 100%.
Counterpart, CoTMix outperforms DSAN by 23.15% in one
cross-domain scenario, which explains the improved average
performance. Similarly, for other datasets, if CoTMix is not
the best-performing method in one cross-domain scenario, the
gap is not significant, except for only a single scenario in the
WISDM dataset.

To test the effectiveness of the class-aware contrastive loss
on the source domain side, we added a second variant of our

TABLE IV: Comparison between deploying different aug-
mentations against our temporal mixup for the in-domain
contrastive adaptation. Clearly, other augmentations are not
robust to the domain shift, and deploying them in contrastive
adaptation yielded relatively less performance that our tempo-
ral mixup.

Augmentation SSC UCIHAR HHAR WISDM

Permutation 57.15 80.63 76.79 54.67
Scaling 54.64 79.11 71.73 53.11
Jittering 56.53 80.27 75.23 51.04
Masking 56.09 80.44 74.64 55.34

Temporal Mixup 62.57 86.05 84.54 66.32

framework (CoTMix*), in which we deploy the unsupervised
contrastive loss (Equation 5) on the source domain side.
We notice that it consistently achieves less performance than
CoTMix, however, it always grades the second-best average
performance outperforming other baselines. This indicates the
efficacy of our method and also shows that considering the
semantic information while contrasting helps to improve the
class-conditional alignment in the target domain.

B. Study of Different Augmentations

In this section, we compare the capability of our proposed
temporal mixup to mitigate the domain shift against other
augmentations proposed for time-series representation learning
tasks. In specific, we replaced our cross-domain temporal
mixup with four different augmentations, i.e., permutation,
scaling, jittering [11], and masking [12]. The experimental
results are provided in Table IV. It can be clearly noticed that
our proposed temporal mixup strategy is more effective than
other augmentations in the UDA settings. These augmentations
may enhance the in-domain representation learning capability
of the model, but they do not serve the adaptation objective,
i.e., reducing the domain shift. This shows how our temporal
mixup contributes to the success of contrastive learning for
domain adaptation.

C. Mixup Strategies

In our temporal mixup, we use a fixed mixup ratio 0.5 <
λ < 1 to keep the semantic characteristics of one domain
for in-domain contrastive learning. Nevertheless, we compare
using this fixed mixup ratio with two different strategies. The
first is the random mixup ratio selected randomly from a beta
distribution λ ∼ Beta(α, α) as in the traditional mixup [39].
The second is to specify λ from a range by randomly selecting
it from the beta distribution and limiting it to a specific range
[51]. In specific, λ′ ∼ max(λ, 1−λ), where λ ∼ Beta(α, α).

Fig. 3 shows the comparison results for the three scenarios,
where we report the average performance of three experiments
at each point in the sub-figures. In general, we find that
the “Random” mixup strategy causes noticeable performance
degradation, as it does not ensure keeping most of the seman-
tics of one dominant domain while contrastive learning. On
the other hand, the “Range” mixup strategy keeps the mixup
ratio within a range ≥ 0.5, which ensures having a more
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(a) SSC (b) UCIHAR (c) HHAR (d) WISDM

Fig. 3: Study of different mixup strategies, as well as different values to our fixed temporal mixup strategy. The red dashed
line indicates the average performance when selecting λ randomly from a beta distribution. The green dashed line shows the
average performance when selecting λ randomly from a beta distribution but limited to a specific range ≥ 0.5. The dashed
lines show the λ values achieving the best performance based on the target risk.

dominant domain, but with different random ratios. Therefore,
it achieves a better performance than the “Random” mixup
strategy, but its randomness affects the performance. Finally,
we find that using a fixed mixup ratio can achieve the best
performance, as it ensures stable ratios of the domains in the
augmented views.

Notably, this analysis shows that we may achieve better
results than those viewed in Table II. The reason is that
these values are selected by minimizing the DEV risk [50],
[35]. This risk may not provide the optimal performance
on the target data for some datasets, however, it is more
realistic in real-world scenarios. In Table V, we show that our
CoTMix can achieve better performance if hyperparameters
were selected based on the target risk, i.e., based on the labels
of the target domain.

TABLE V: Comparison between the average performance with
the realistic DEV risk and the overoptimistic target risk.

DEV risk Target risk

Dataset λ Avg. MF1 Score λ Avg. MF1 Score

SSC 0.79 62.57 0.79 62.57
UCIHAR 0.90 86.05 0.70 94.26

HHAR 0.52 84.54 0.59 87.18
WISDM 0.72 66.32 0.60 68.30
Boiler 0.88 63.93 0.83 64.12

TABLE VI: Ablation study showing the effect of each loss on
the overall performance. By deploying contrastive loss on only
one domain, it can still improve the performance. However,
we clearly get the best performance by moving both domains
towards an intermediate space.

Component Dataset

Lent LCAC LUC SSC UCIHAR HHAR WISDM

- - - 51.04 77.30 66.74 52.75
✓ - - 54.84 79.93 73.14 54.07
✓ ✓ - 59.14 83.82 77.34 58.79
✓ - ✓ 57.43 80.87 80.11 61.11
✓ ✓ ✓ 62.57 86.05 84.54 66.32

D. Ablation Study

Since our CoTMix combines three losses in addition to Lcls,
we study the effect of these losses on the overall performance
to provide additional insights on what makes CoTMix per-
formant. Table VI presents this ablation study, where Lcls is
present by default in all the cases. In particular, we first omit
all three losses, to show the bottom-line performance. Next, we
add the entropy minimization loss to the training. After that,
we apply contrastive training on only one side interchangeably.
Finally, we show the results with all the losses together.

We arrive at two conclusions. First, adding entropy min-
imization improves the overall performance, as it helps the
classifier to be more confident about the unlabeled target
domain. Second, applying the contrastive loss to only one side
still improves the performance. This indicates that moving one
domain towards an intermediate domain by considering the
cross-domain temporal relations is still effective for adaptation.
Moreover, we find that SSC and UCIHAR datasets achieve
better performance by contrasting only on the source side
than contrasting only on the target side. Counterpart, the
performance on HHAR and WISDM datasets improve more
with contrasting only on the target side than the source side.
This can be regarded to the efficacy of the learned temporal
features from one side over the other for adapting the two
domains. This experiment also shows that moving only one
domain towards the intermediate domain may not be the most
effective way. Nevertheless, the performance is consistently
the best when contrastive losses are applied on both sides,
i.e., moving both domains.

E. Selection of Temporal Mixup Window

Our proposed temporal mixup could be affected by the
length of aggregated timesteps T in the less-dominant domain.
Therefore, we study its significance on the performance, as
shown in Fig. 4. To avoid random selection to the value of
T , we assign it as a proportion in the sample length L. The
first case in the analysis, (i.e., T = 0) represents a one-to-one
mixup of timesteps among source and target domains, while
in the next cases, we gradually increase T .

First, we notice that when T = 0, which corresponds to the
traditional mixup [39], the performance usually drops. This
shows the significance of our temporal mixup strategy, as it
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(a) UCIHAR and HHHAR (b) SSC and WISDM

Fig. 4: Sensitivity analysis applied on the four datasets to study
the effect of the number of timesteps T , as a percentage of the
signal length L, on the performance. We notice a progressive
performance improvement with including more timesteps in
the temporal mixup operation until T approaches 0.1L. (We
merged datasets with close performance in one figure)

significantly improves the performance in the four datasets.
We find that the best performance is achieved with T = 0.1L
in UCIHAR and HHAR datasets, and T = 0.05L in SSC
and WISDM datasets. Increasing T beyond these values can
still achieve better performance than the usual mixup until
some point, where the performance is then hurt. This could
be regarded to transferring more irrelevant information than
the proper window of temporal information. Based on this
sensitivity analysis, we recommend searching for the best
value T in the interval [0.05L, 0.2L].

VI. CONCLUSIONS

In this work, we propose a novel time-series unsuper-
vised domain adaptation framework (CoTMix) that exploits
contrastive learning to mitigate the domain shift problem.
Specifically, we develop a cross-domain temporal mixup to
generate augmented views in both source and target domain
sides and then leverage these augmented views for in-domain
contrasting. The extensive experiments proved the superiority
of our proposed approach over state-of-the-art UDA methods.
In addition, the ablation study showed the importance of
contrastive learning in both source and target domain sides
to narrow down the domain shift. Finally, we show that un-
like other augmentations proposed for representation learning
tasks, our cross-domain temporal mixup is more robust against
the domain shift.
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